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Abstract. An interpretation of the formation of halo in accelerators based on quantum-like theory by a
diffraction model is given in terms of the transversal beam motion. Physical implications of the longitudinal
dynamics are also examined.

1 Introduction

Recently the description of the dynamical evolution of
high density beams by using the collective models, has
become more and more popular. A way of developing this
point of view is the quantum-like approach [1] where one
considers a time-dependent Schrödinger equation, in both
the usual linear and the less usual nonlinear form, as a
fluid equation for the whole beam. In this case the squared
modulus of the wave function (named beam wave func-
tion) gives the distribution function of the particles in
space at a certain time [2]. The Schrödinger equation may
be taken in one or more spatial dimensions according to
the particular physical problem; furthermore the motion
of the particles in the configuration space can be consid-
ered as a Madelung fluid if one chooses the equation in its
linear version.

Although the validity of the model relies only on ex-
periments and on the new predictions which must be ver-
ified experimentally, we like to invoke here a theoretical
argument that could justify the Schrödinger quantum-like
approach. Let us think of particles in motion within a
bunch in such a way that the single particle moves un-
der an average force field due to the presence of all others
and collides with the neighbouring ones in a complicated
manner. It is obviously impossible to follow and describe
all the forces deterministically. One then faces a situation
where the classical motion determined by the force-field is
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perturbed continuously by a random term, and one finds
immediately a connection with a stochastic process. If one
assumes that the process is Markovian and Brownian, one
easily arrives at a modification of the equations of mo-
tion in such a manner that would be synthesized by a
linear Schrödinger equation depending on a physical pa-
rameter that has the dimension of action [3,4]. Wave quan-
tum mechanics follows if this parameter coincides with the
Planck’s constant h̄, whereas the quantum-like theory of
beams is obtained if one chooses it as the normalized emit-
tance ε [1]. In both cases, the evolution of the system is
expressed in terms of a continuous field ψ which defines
the so-called Madelung fluid. We may notice that the nor-
malized emittance ε with the dimension of an action is
the natural choice in the quantum-like theory, that finds
the analogue in the Planck’s constant h̄ because it repro-
duces the corresponding area in the phase-space of the
particle.

We here point out that, after linearizing the Schrö-
dinger-like equation, for beams in an accelerator, one can
use the whole apparatus of quantum mechanics, keeping
in mind a new interpretation of the basic parameters (for
instance the Planck’s constant h̄ −→ ε where ε is the
normalized beam emittance). In particular one introduces
the propagator K (xf , tf |xi, ti) of the Feynman theory for
both longitudinal and transversal motion. A procedure of
this sort seems effective for a global description of several
phenomena such as intrabeam scattering, space-charge,
particle focusing, that cannot be treated easily in detail
by “classical mechanics”. One consequence of this proce-
dure is to obtain information on the creation of the Halo
around the main beam line by the losses of particles due
to the transversal collective motion.
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2 Transversal motion

Let us indeed consider the Schrödinger like equation for
the beam wave function

iε∂tψ = − ε2

2m
∂2
xψ + U (x, t)ψ (1)

in the linearized case U (x, t) does not depend on the den-
sity |ψ|2. ε here is the normalized transversal beam emit-
tance defined as follows:

ε = m0cγβε̃ , (2)

ε̃ being the emittance usually considered, (we may also
introduce the analogue of the de Broglie wavelength as
λ = ε/p). Let us now focus our attention on the one
dimensional transversal motion along the x-axis of the
beam particles belonging to a single bunch and assume
a Gaussian transversal profile for particles injected into a
circular machine. We want to try a description of inter-
actions that cannot be treated in detail, as a diffraction
through a slit that becomes a phenomenological boundary
in each segment of the particle trajectory. This condition
should be applied to both beam wave function and beam
propagator K. The result is a multiple integral that de-
termines the actual propagator between the initial and
final states in terms of the space-time intervals due to the
intermediate segments.

K (x+ x0, T + τ |x′, 0)

=
∫ +b

−b
K (x+ x0, τ |x0 + yn, T + (n− 1)τ ′)

×K (x+ yn, T + (n− 1)τ ′|x0 + yn−1, T + (n− 2)τ ′)
· · ·K (x+ y1, T |x′, 0) dy1dy2 · · · dyn (3)

where τ = nτ ′ is the total time spent by the beam
in the accelerator (total time of revolutions in circular
machines), T is the time necessary to insert the bunch
(practically the time between two successive bunches) and
(−b,+b) the space interval defining the boundary men-
tioned above. Obviously b and T are phenomenological
parameters which vary from a machine to another and
must also have a strict correction with the geometry of
the vacuum tube where the particles circulate.

We may consider the two simplest possible approxima-
tions for K(n|n−1) ≡ K(x0 +yn, T+(n−1)τ ′|x0 +yn−1 +
(n− 2)τ ′):

1. We substitute the correct K with the free particle K0

assuming that in the τ ′ interval (τ ′ ¿ τ) the motion is
practically a free particle motion between the bound-
aries (−b,+b).

2. We substitute it with the harmonic oscillator
Kω (n|n− 1) considering the betatron and the syn-
chrotron oscillations with frequency ω/2π

3 Free particle case

We may notice that the convolution property (3) of the
Feynman propagator allows us to substitute the multiple

integral (that becomes a functional integral for n −→ ∞
and τ ′ −→ 0) with the single integral

K(x+x0, T+τ |x′, 0) =
∫ +b

−b
dyK(x+ x0, T + τ |x0 + y, T )

×K(x0 + y, T |x′, 0)dy (4)

After introducing the Gaussian slit exp
[
− y2

2b2

]
instead

of the segment (−b,+b) we have

K (x+ x0, T + τ |x′, 0)

=
∫ +∞

−∞
dy exp

[
− y2

2b2

]{
2πih̄τ
m

2πih̄T
m

}− 1
2

× exp
[

im
2h̄τ

(x− y)2

]
exp

[
im

2h̄T
(x0 + y − x′)2

]
=
√

m

2πih̄

(
T + τ + Tτ

ih̄
mb2

)− 1
2

× exp

[
im
2h̄

(
v2

0T +
x2

τ

)
+

(
m2/2h̄2τ2

)
(x− v0τ)2

im
h̄

(
1
T + 1

τ

)
− 1

b2

]
(5)

where v0 = x0−x′
T and x0is the initial central point of the

beam at injection and can be chosen as the origin (x0 = 0)
of the transverse motion of the reference trajectory in the
frame of the particle. h̄ must be interpreted as the
normalized beam emittance in the quantum-like
approach.

With an initial Gaussian profile (at t = 0), the beam
wave function (normalized to 1) is

f(x) =
{α
π

} 1
4

exp
[
−α

2
x′2
]

(6)√
1
α being the r.m.s transversal spot size of the beam; the

final beam wave function is:

φ(x) =
∫ +∞

−∞
dx′
(α
π

) 1
4
e[−

α
2 x
′2]K (x, T + τ ;x′, 0)

= B exp
[
Cx2

]
(7)

with

B =
√

m

2πih̄

{
T + τ + Tτ

ih̄
mb2

}− 1
2 {α

π

} 1
4

×
√√√√ π(

α
2 − im

2h̄T −
m2/2h̄2T 2

im
h̄ ( 1

T + 1
τ )− 1

b2

)
C =

im
2h̄τ

+
m2/2h̄2T 2

im
h̄

(
1
T + 1

τ

)
− 1

b2

+

τ2

T 2

{
m2/2h̄2T 2

im
h̄ ( 1

T + 1
τ )− 1

b2

}2

(
α
2 − im

2h̄T −
m2/2h̄2T 2

im
h̄ ( 1

T + 1
τ )− 1

b2

) (8)
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The final local distribution of the beam that undergoes
the diffraction is therefore

ρ(x) = |φ(x)|2 = BB∗ exp
[
−α̃x2

]
(9)

where α̃ = −(C+C∗) and the total probability per particle
is given by

P =
∫ +∞

−∞
dxρ(x) = BB∗

√
π

α̃
(10)

Under certain physical conditions (such as the LHC
transversal, Table–I), P ≈ 1√

α
mb
h̄T .

4 Oscillator case

Similarly we may consider the harmonic oscillator
case (betatronic oscillations and synchrotronic oscilla-
tions) to compute the diffraction probability of the single
particle from the beam wave function and evaluate the
probability of beam losses per particle. The propagator
Kω (x, T + τ |y, T ) in the later case is:

K (x, T + τ |x′, 0)

=
∫ +∞

−∞
dy exp

[
− y2

2b2

]
Kω (x, T + τ |y, T )Kω (y, T |x′, 0)

=
∫ +∞

−∞
dy exp

[
− y2

2b2

]{
mω

2πih̄ sin(ωτ)

} 1
2

× exp
[

imω
2h̄ sin(ωτ)

{(
x2 + y2

)
cosωτ − 2xy

}]
×
{

mω

2πih̄ sin(ωT )

} 1
2

× exp
[

imω
2h̄ sin(ωT )

{(
y2 + x′

2
)

cosωT − 2x′y
}]

=
{

1
2π
C̃

} 1
2

exp
[
Ãx2 + B̃x′

2 + C̃xx′
]

(11)

where

Ã = i
mω

2h̄
cos (ωτ)
sin (ωτ)

−
(mω

2h̄

)2 1
sin2 (ωτ)

1
D
,

B̃ = i
mω

2h̄
cos (ωT )
sin (ωT )

−
(mω

2h̄

)2 1
sin2 (ωT )

1
D

C̃ = −
(mω

2h̄

)2 2
sin (ωτ) sin (ωT )

1
D
,

D =
1

2b2
− i

mω

2h̄

(
cos (ωτ)
sin (ωτ)

+
cos (ωT )
sin (ωT )

)
(12)

φω(x) =
∫ +∞

−∞
dx′
(α
π

) 1
4

exp
[
−α

2
x′2
]
Kω (x, T + τ ;x′, 0)

= N exp
[
Mx2

]
(13)

where

N =
(α
π

) 1
4

 C̃(
α− 2B̃

)


1
2

,

M = Ã+
C̃2

2
(
α− 2B̃

) (14)

ρω(x) = |φω(x)|2 = N∗N exp
[
− (M∗ +M)x2

]
(15)

Pω =
∫ +∞

−∞
dxρ(x) = N∗N

√
π

(M∗ +M)
(16)

Under some physical situations (such as the LHC transver-
sal case) we have, Pω ≈ 1√

α
mb
h̄

ω
sin(ωT ) . In the approximate

formulae for P and Pω, when applicable, the parameter τ
does not play a significant role.

5 Longitudinal motion

As far as the longitudinal motion is concerned the
quantum-like approach appears to be quite appropriate
to obtain information on the modified length (and con-
sequently the stability) of the bunches both in the linear
and circular accelerators.. To be more specific it describes
a large number of important nonlinear phenomena that
are present in RF particle accelerators (with residual ad-
dition of longitudinal coupling impedance) as well as in
cold plasmas [8].

We introduce the Gaussian parameter b, as we did with
the Gaussian slit e−x

2/2b2 in the transversal motion and
look for a phenomenological solution of the equation for
the beam wave function ψ

iεN∂tψ = − ε2N
2γ3m0

∂2
xψ +

1
2
m0ω

2x2ψ + Λ |ψ|2 (17)

where ω is the synchrotron frequency, Λ represents the
coupling with non-linear terms and x is the longitudinal
particle displacement with respect to the synchrotronous
one.

The Feynman propagator is given by (11) and the ini-
tial wave function can be again assumed as a Gaussian
wave packet. The main difference with the transversal case
stays in the numerical values of the parameters that ex-
hibit a different physical situation and require a different
physical interpretation.

6 Preliminary estimates

Examples of the numerical calculations for two projects
(LHC for ions and HIDIF for heavy ions) with very differ-
ent physical characteristics are reproduced in the following
Tables.
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Table 1. Circular machines: transversal case

Parameters LHC HIDIF
(at injection) (storage ring)

Normalized Transverse 3.75 mm mrad 13.5 mm mrad
Emittance
Total Energy, E 450 GeV 5 Gev

1√
α

1.2 mm 1.0 mm

T 25 nano sec. 100 nano sec.
τ 88 sec. 4.66 sec.
b 1.2 mm 1.0 mm

1√
α̃

1.41× 109 m 1.96× 107 m

P 3.39× 10−5 2.37× 10−3

ω 4.44× 106 Hz 1.15× 107 Hz
1√
α̃ω

1.03× 102 m 2.07× 10−1 m

Pω 3.40× 10−5 3.00× 10−3

Table 2. Circular machines: longitudinal case

Parameters LHC (at injection)

Normalized Longitudinal Emittance 1.00 eV sec.
Total Energy, E 450 GeV

1√
α

7.7 cm

T 25 nano sec.
τ 88 sec.
b 7.7 m
ω 4.23× 102 Hz

1√
α̃ω

1.14× 106 m

Pω 0.575

Table 3. RF main LINAC of HIDIF

Parameters

Normalized Longitudinal Emittance 0.7 keV nano sec.
Total Final Energy, E 5 Gev

1√
α

15 cm

T 75 micro sec.
τ 4.9× 10−4 sec.
b 15 m
ω 4.13× 105 Hz

1√
α̃ω

6.72× 10−2 m

Pω 0.707

The machine parameters of Tables 1, 2 and 3 are de-
rived from [6], [7]. In particular ω of Table 3 is calculated
on the basis of the “Main LINAC” Table (page 198 of [7])
with the standard formula:

ω2 = −eEωRF sin (φs)
mβ3c3

(18)

where the symbols have the usual meaning.

7 Comments and conclusions

Transversal Motion: This use of a quantum-like ap-
proach appears a simple powerful tool for the analysis of

the evolution of a beam in linear and circular accelerators
and storage rings.

Indeed the introduction of a very limited number of
phenomenological parameters (in our simplified model the
only parameter b) in the beam quantum-like equations
and the use of the Schrödinger-type solutions allow us to
calculate how the bunches evolve and modify owing to the
forces (linear and non-linear) acting on the particles.

As far as the betatronic oscillations are concerned the
mechanism of the diffraction through a slit appears a
very adequate phenomenological approach. Indeed we can
interpret the probability (local and total) for a particle
leaving its position as the mechanism of creating a halo
around the main flux.

The values of τ , ω are strictly connected with the char-
acteristic parameters of the designs of the accelerators (in
our example LHC and HIDIF)

The phenomenological parameter b represents sev-
eral fundamental processes that are present in the beam
bunches (and play a determinant role in the creation of
the halo) such as intrabeam scattering, beamstrahlung,
space-charge and imperfections in the magnets of the lat-
tice that could cause non-linear perturbative effects.

We like to recall here the analogy with the diffraction
through a slit in optics where it represents a much more
complicated physical phenomenon based on the scattering
of light against atomic electrons.

τ is the total time spent in the accelerator by a sin-
gle bunch, T may coincide with the average time interval
between two successive injections and ω is the betatronic
average frequency given by 2πQfr, fr being the revolution
frequency.

The fact that a small number of parameters can take
into account many physical processes is a very nice fea-
ture of the quantum-like diffraction approach. However
the deep connection between this method and the actual
physical process as well as the nonlinear dynamical clas-
sical theory is necessary to be understood.

We remark now the following points

1. The total probability (per particle) calculated from the
free particle propagator (P ) and from the harmonic os-
cillator one (Pω) appear very near for the two different
circular systems, LHC and HIDIF.

2. The local distribution between the two however looks
quite different for the free and harmonic oscillator case,
thus giving us a profile of the halo which appears par-
ticularly interesting in the HIDIF case (final Gaussian
width ∼ 1√

α̃
∼ 2.07× 10−1 m)

3. The HIDIF scenario, as we expect because of the
higher intensity, exhibits a total loss of particles (and
beam power) which is at least 103 times higher than
LHC. The picture we have obtained for the transversal
motion in the two analyzed examples (on the basis of
the parameters provided by the latest designs) is en-
couraging because the halo losses are under control.
In both cases the estimated losses of the beam power
appear much smaller than the permissible 1 Watt/m.

Longitudinal motion The formulae (7) and (13) can
be used for calculating the motion of the length of the
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bunch related to the synchrotron oscillations in both lin-
ear and circular machines. In this case we must consider
only the propagator of the harmonic oscillator which is
the simplest linear version of the classical dynamical mo-
tion for the two canonical conjugate variables that express
the deviations of an arbitrary particle from the synchro-
nous one namely the RF phase difference ∆φ = φ − φs
and the energy difference ∆E = E − Es. Our examples
are again the LHC synchrotron oscillations and the ones
of the main LINAC in the HIDIF project. The phenom-
enological Gaussian function e−x

2/2b2 acquires a different
meaning from the one it had in the transversal motion.
Our analysis deals with a Gaussian longitudinal profile
and predicts a coasting beam in LHC and a quite stable
bunch in the main LINAC of HIDIF.

We may therefore conclude that our approach al-
though preliminary is interesting and particular attention
is required in treating the longitudinal motion where the
nonlinear space-charge forces are very important. So the
quantum-like method appears promising for the future
simulations in beam physics.
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